

中华人民共和国国家标准

GB/T 3512—2014/ISO 188:2011 代替 GB/T 3512—2001

硫化橡胶或热塑性橡胶 热空气加速老化和耐热试验

Rubber, vulcanized or thermoplastic—Accelerated ageing and heat resistance tests—Air-oven method

(ISO 188:2011, Rubber, vulcanized or thermoplastic—Accelerated ageing and heat resistance tests, IDT)

受控文件 TROUGED ISSUE

CONTROLLED ISSUE

受控编号/Control NO.:

发放日期/Issue Date

接收人/Issue To

2014-12-22 发布。

2015-06-01 实施

中华人民共和国国家质量监督检验检疫总局 皮 布 国 国 家 标 准 化 管 理 委 员 会

GB/T 3512-2014/ISO 188:2011 #

前 言

本标准按照 GB/T 1.1-2009 给出的规则起草。

本标准代替 GB/T 3512—2001《硫化橡胶或热塑性橡胶 热空气加速老化和耐热试验》,与 GB/T 3512—2001相比,主要技术变化如下:

- ——增加了推荐测试橡胶拉伸性能的试验方法 ISO 37 和橡胶硬度的试验方法 ISO 48(见 3.1);
- 一一增加了多单元式老化箱、柜式老化箱和强制通风式老化箱及其风速的测定方法(见 4.1.2、4.1.3、4.1.4);
- ——增加了对设备校准的规定(见第5章);
- ——用 ISO 23529 代替了 GB/T 2941(见第8章,2001年版的第8章);
- 一一增加了精密度试验的结果(见第11章,2001年版的第10章)。

本标准使用翻译法等同采用 ISO 188:2011《硫化橡胶或热塑性橡胶 加速老化和耐热试验》。 与本标准中规范性引用的国际文件有一致性对应关系的我国文件如下:

- ——GB/T 528—2009 硫化橡胶或热塑性橡胶 拉伸应力应变性能的测定(ISO 37:2005, IDT)
- ——GB/T 2941—2006 橡胶物理试验方法试样制备和调节通用程序(ISO 23529.2004, IDT)
- ——GB/T 6031—1998 硫化橡胶或热塑性橡胶硬度的测定(10~100 IRHD)(idt ISO 48:1994) 本标准由中国石油和化学工业联合会提出。

本标准由全国橡胶与橡胶制品标准化技术委员会通用试验方法分会(SAC/TC 35/SC 2)归口。

本标准起草单位:广州合成材料研究院有限公司、国家橡胶及乳胶制品质量监督检验中心、风神轮胎股份有限公司、固铂成山(山东)轮胎有限公司、青岛伊科思新材料股份有限公司、山东八一轮胎制造有限公司、江苏明珠试验机械有限公司、北京橡胶工业研究设计院、贵州轮胎股份有限公司。

本标准主要起草人:谢宇芳、易军、刀建华、郑向前、任绍文、王剑锋、林庆菊、王代强、刘强、赵建林、 朱明、谢君芳、李静、冯萍。

本标准所代替标准的历次版本发布情况为:

——GB/T 3512—1983(1989),GB/T 3512—2001.

引 言

热空气加速老化和耐热试验是评价橡胶相对耐热性的方法。为了评价橡胶长期相对耐热性,使橡胶在规定条件下老化一定时间后,测试橡胶的性能,并与橡胶的原始性能比较。

在热空气加速老化试验中,橡胶短时间暴露于试验环境中,以期产生自然老化的效果。

在耐热老化试验中,橡胶长期暴露在与其使用时相同的温度下。

本标准中使用的两种方法分别为空气流速低的热空气老化方法和强制通风且空气流速高的热空气 老化方法。

根据试验目的和高分子材料种类选择试样暴露时间、温度和环境以及老化箱类型。在空气老化箱方法中,升高温度会加速老化。老化加速的程度因橡胶种类和测试性能而异。提高空气流速也能加速老化。因此,使用不同老化箱老化的试验结果可能不同。这些因素的影响如下:

- a) 热空气加速老化不能真实地再现橡胶在所有环境下由自然老化引起的变化。
- b) 热空气加速老化有时不能准确地预测橡胶的相对使用寿命。橡胶在贮存或使用时具有不同的老化速率,而在高于环境温度或使用温度下老化可能会使不同橡胶的表观寿命趋于一致。 在一个或几个中间温度下老化可用来评价高温加速老化的可靠性。
- c) 热空气加速老化试验后选用不同的性能评估橡胶的相对寿命,其结果可能不一致。因此,进行 老化测试的性能应具有实际意义,且测试结果应有相当的准确度。

热空气老化箱不能模拟橡胶处于拉伸状态下暴露于光或臭氧中的自然老化情况。

可在几个温度下进行老化试验,用 ISO 11346 中描述的 Arrhenius 曲线或 Williams Landel Ferry (WLF)方程来预测橡胶的寿命和最高使用温度。

硫化橡胶或热塑性橡胶 热空气加速老化和耐热试验

警告:使用本标准的人员应有正规实验室工作的实践经验。本标准并未指出所有可能的安全问题。 使用者有责任采取适当的安全和健康措施,并保证符合国家有关法规规定的条件。

1 范围

本标准规定了硫化橡胶或热塑性橡胶热空气加速老化和耐热试验方法。两种方法分别为:方法 A:空气流速低的多单元式或柜式热空气老化箱,每小时换气 3 次~10 次;方法 B:使用风扇强制通风的柜式热空气老化箱,每小时换气 3 次~10 次。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 25269—2010 橡胶 试验设备校准指南(ISO 18899:2004,IDT)

_ ISO 37 硫化橡胶或热塑性橡胶 拉伸应力应变性能的测定(Rubber, vulcanized or thermoplastic—Determination of tensile strss-strain properties)

ISO 48 硫化橡胶或热塑性橡胶 硬度的测定(10~100 IRHD)[Rubber, vulcanized or thermoplastic—Determination of hardness (hardness between 10 IRHD and 100 IRHD)]

ISO 23529 橡胶物理试验方法试样制备和调节通用程序(Rubber—General procedures for preparing and conditioning test pieces for physical test methods)

3 原理

3.1 概述

试样在高温和大气压力下的空气中老化后测定其性能,并与未老化试样的性能作比较。

应使用与实际应用有关的物理性能判定橡胶的老化程度,但在没有表明这些性能与实际应用明确相关时,建议测试橡胶的拉伸强度、定伸应力、断裂伸长率(按 ISO 37 测定)和硬度(按 ISO 48 测定)。

3.2 热空气加速老化

在本试验方法中,试样在比橡胶使用环境更高的温度下暴露,以期在短时间内获得橡胶自然老化的效果。

3.3 耐热试验

在本试验方法中,试样暴露在与橡胶使用环境相同的温度下。

4 设备

4.1 空气老化箱

4.1.1 概述

试样的总体积不超过老化箱有效容积的 10%。悬挂的试样间距至少为 10 mm,在柜式和强制通风式老化箱中,试样与老化箱壁的间距至少为 50 mm。

在整个老化试验期间,应控制老化箱的温度,使试样的温度保持在规定的老化温度允许的公差范围内,温度传感器应安装在箱体内靠近试样的位置以记录真实的老化温度。

在加热室结构中不应使用铜或铜合金

老化箱内的空气应缓慢流动,老化箱的空气置换次数为每小时3次~10次

讲入老化箱的空气在接触样品前,应确保加热到老化箱设定温度的士1℃范围内。

换气率可通过者化箱的容积和进入老化箱的空气流速测定。

注:为了确保老化和耐热试验有良好的精密度,在整个试验期间保持温度均匀稳定,并确认老化箱在时间及空间上都在温度界限内产分重要。 普爾多奇爾德國 家提高温度的咨询性,但是多一的流通会影响老化结果。低流速时,会暴积降解产物和挥赛维强器,国政证会消耗量气。高端速时,由于颠簸至增塑剂和抗氧剂的氧化和挥发,会导致降解加速。

4.1.2 多单元式老化箱

老化箱由一个或多个高度不久于 300 mm 的过式圆棒形单元组成 单元应置于恒温控制传热 良好的介质中(铝、液浴或饱和 流过一个单元的空气不允许更流多另一个单元。

单元内的空气应慢速流动,逐步流速及取决于强气速率。

4.1.3 柜式老化箱

老化箱仅由一个箱室组成,箱室内的空气应慢速流动,空气流速仅取决于换气速率,在加热室内不应有换气扇。

4.1.4 强制通风式老化箱

可使用下列两种老化箱:

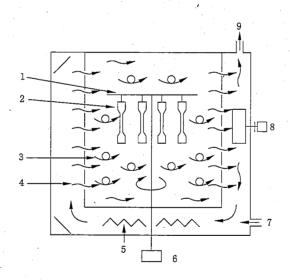
a) 1型层流空气老化箱(见图1)。


流经加热室的空气应尽可能均匀且保持层流状态。放置试样时朝向空气流向的试样面积应最小, 以免扰动空气流动。空气流速应在 0.5 m/s~1.5 m/s 之间。

相邻试样间的空气流速可通过风速计测量。

b) 2型湍流空气老化箱(见图 2)。

从侧壁进风口进入的空气流经加热室。在试样周围形成湍流,试样悬挂在转速为 5 r/min~10 r/min的支架上以确保试样受热均匀。空气平均流速应为 0.5 m/s±0.25 m/s。


试样附近的平均空气流速可用风速计测量 9 个不同位置的流速得到(参见图 A.1)。测量方法参见 附录 A。

说明:

- 1----试样;
- 2——层流的空气;
- 3——加热元件;
- 4——空气入口;
- 5——换气扇;
- 6----空气出口。

图 1 1型层流空气老化箱

说明:

- 1---试样支架;
- 2----试样;
- 3---湍流的空气;
- 4——层流的空气(入口、出口和箱壁附近);
- 5——加热元件;

6-----电机;

7——空气入口;

8----换气扇;

9——空气出口。

图 2 2型湍流空气老化箱

5 校准

设备的校准见附录D。

6 试样

建议按照选定性能的试验要求制备和调节试样,并进行加速老化或耐热试验,不应用完整的成品和样品片材进行试验。老化后的试样不应再进行任何机械,化学或热处理。

只有尺寸相近、暴露面积大致相同的试样之间才能进行比较。 越样的数量应与相应性能的标准所 要求的试样数量一致。加热之前应先测量这样,只要有可能应查老化后标记,因为有些做标记的墨水会 影响橡胶的老化。

应确保区分试样的标记不在试样的有效区域内,且在加热过程中不会消失也不会破坏橡胶。

避免在同一台者化箱。同时老化不同种类的橡胶。为防止硫磺、抗氧剂、过氧化物或增塑剂发生迁移,建议采用单独断老化箱进行试验。然而,在没有充足设备的情况下,建议只有以下几种材料可以同时老化:

- a) 相同类型的高分子材
- b) 含有相同类型的促进和强度与促进剂原比大致相同的
- c) 含有相同类型的抗氧剂
- d) 增塑剂类型和含量相同的家庭
- 7 硫化与试验之间的时间间隔

除非是出于技术方面的考虑。否则应逐循头下要求。 对所有试验。硫化与试验之间的最短时间间隔应为16 6 进行伸载试验时,硫化与试验之间的时间 间隔应不少于72 b

问隔四小少了12 对非制品试验,硫化与试验之间的时间间隔不应超过4周;对于比对试验,应尽可能在相同的时间间隔内进行试验。

对制品试验,只要有可能,硫化与试验之间的时间间隔应不超过。个月、在其他情况下,应在收到制品之日起的2个月内进行试验。

8 老化条件(时间和温度)

8.1 概述

获得给定老化程度所需的时间取决于待测橡胶的种类。

在选定的老化时间间隔内,试样的老化程度不宜太大,以免影响物理性能的最终测定。

选用高温可能导致发生不同于使用温度下的老化机理,从而使试验结果无效。

尽可能保持温度稳定,对获取良好的试验结果至关重要。为了获得准确的结果,在试样附近放置已校准的温度传感器,确保在该处的温度准确,并尽可能精确地控制温度。使用校准证书上的校准因子获得尽可能接近真实的温度。在 ISO 23529 中,100 ℃及以下允许的公差为 ±1 ℃,125 ℃~300 ℃允许的公差为 ±2 ℃。研究表明,阿累尼乌斯因子为 2 时,温度改变 1 ℃对应着老化时间相差 10%,阿累尼乌斯因子为 2.5 时,温度改变 1 ℃对应着老化时间相差 15%。这意味着在 125 ℃下进行老化试验时,虽然温度在规定的公差范围内,但是为了获得一致的试验结果,两个实验室的老化时间会相差 60%。

8.2 加速老化

根据 ISO 23529、产品标准或者相关方协商确定老化时间和温度。老化试验应在常压环境下进行。

8.3 耐热试验

根据 ISO 23529、产品标准或者相关方协商确定老化时间和温度。老化温度应代表使用温度,且应在常压环境下进行老化试验。

9 试验步骤

加热老化箱到试验温度,将试样放入到老化箱中。如果使用多单元老化箱,每个单元中只能放一种橡胶。试样应不受应力,各面自由暴露在空气中,且不受光照。

达到规定的老化时间后,从老化箱中取出试样,取出的试样以不受应力的方式在待测试的试验性能 所要求的环境下调节不少于 16 h,不超过 6 天,按照有关性能试验方法测试。

10 结果表示

试验结果的表示应符合与待测性能相关的标准。应报告未老化和老化试样的试验结果,在适当的情况下,按照式(1)计算测试性能的变化率:

$$P = \frac{x_a - x_0}{x_0} \times 100\%$$
(1)

4 式中:

P ——性能变化率,%;

x。——老化前的性能值;

x₃——老化后的性能值。

硬度的变化按照式(2)计算:

$$H = x_a - x_0 \qquad \qquad \dots$$

式中:

H ——硬度变化;

x。——老化前的硬度;

x_a——老化后的硬度。

11 精密度

参见附录 B。

12 试验报告

试验报告应包括以下信息:

- a) 样品详情
 - 1) 样品及来源的详细说明;
 - 2) 如果知道样品的组分和加工条件,应注明;
 - 3) 成型和试验间的时间间隔;

- 4) 试样制备方法(如模压、从样品裁取)及裁样的部位。
- b) 试验方法
 - 1) 引用本标准;
 - 2) 使用的方法(A或B);
 - 3) 测试的性能和使用的试样类型。
- c) 试样详情
 - 1) 使用的老化箱类型;
 - 2) 使用的试样数量;
 - 3) 是加速老化还是耐热试验;
 - 4) 温度和老化时间;
 - 5) 本标准中未指明的任何试验细节。
- d) 试验结果
 - 1) 根据待测性能的标准给出老化前后的单个值;
 - 2) 以百分数的形式表示性能值变化率;对硬度而言,用硬度差值表示。
- e) 试验日期。

附 录 A (资料性附录) 强制通风式老化箱空气流速的测定

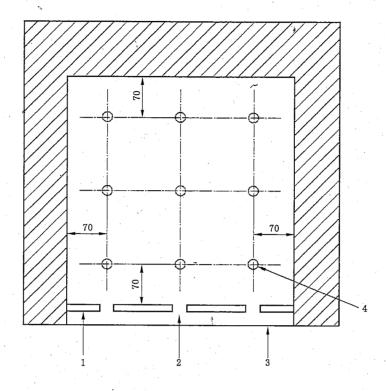
A.1 范围

本附录给出了测定1型和2型老化箱中空气流速的试验方法。

A.2 设备

便携式风速计。

A.3 程序


- A.3.1 应在悬挂试样的中心面上 9 个位置测量空气流速。用 PVC(聚氯乙烯)或 PMMA(聚甲基丙烯酸甲酯)制成与老化箱门尺寸一致且厚度至少为 2 mm 的透明塑料板,并在上面钻 3 个能够插入风速计的孔,其中两个孔分别距左右边缘 70 mm,另一个孔在两孔的正中间(见图 A.1)。
- A.3.2 应在标准实验室温度下测定风速。
- A.3.3 打开老化箱的门,放入塑料板。
- A.3.4 开启老化箱,在每个孔中依次插入风速传感器,测量图 A.1 中 9 个位置的空气流速。确保塑料板和风速计是紧密相连的。
- A.3.5 读取每个位置风速的最大值,以消除传感器的方向性造成的影响。

A.4 结果计算

A.4.1 计算 9 个测量位置测得的风速平均值。

单位为毫米

A War Tark

说明:

- 1----塑料板;
- 3——打开的门;
- 4——测量位置。

图 A.1 老化箱中测量空气流速的位置

附 录 B (资料性附录) 精密度

B.1 概述

根据 ISO/TR 9272 进行实验室间比对试验,计算表示重复性和再现性的精密度。1996 年组织了第一次实验室间比对试验,1997 年分析了比对试验结果。2005 年组织了第二次实验室间比对试验。关于精密度的概念和术语参见 ISO/TR 9272。附录 C 给出了使用重复性和再现性结果的指南。

B.2 第一次实验室间比对试验的精密度

- **B.2.1** 向各参与实验室分发四种已制备好的橡胶试样(NR、NBR、EPDM 和 AEM)。采用方法 A 和方法 B 进行老化试验。所有试样的老化时间均为 168 h,NR、NBR、EPDM 和 AEM 的老化温度分别为 70 \mathbb{C} 、100 \mathbb{C} 、125 \mathbb{C} 和 150 \mathbb{C} 。
- B.2.2 共有 16 个实验室参加了该次实验室间比对试验。11 个实验室采用方法 A 进行老化试验,10 个实验室采用方法 B 进行老化试验,其中 5 个实验室同时采用方法 A 和方法 B 进行老化试验。因为某些实验是在老化后进行,在整理数据时丢弃了这些数据,因此试验数据少于实验室数目。每种试验的实际参与实验室数目列于精密度表中。
- **B.2.3** 根据 ISO 48:1994 中的方法 M 测定试样老化前、后的硬度。根据 ISO 37 分别在老化前、后测试 5 个试样的拉伸性能,拉伸试验采用 1 型和 2 型试样。
- **B.2.4** 本次实验室间比对试验测定的是 1 型精密度。本次精密度试验的两次重复测量之间间隔了 $2\sim 3$ 周时间,不同于通常测试之间的 $1\sim 2$ 天的时间间隔。

表中使用的符号如下:

- r=重复性,测量单位;
- (r)=重复性,以平均值的百分数表示;
- R=再现性,测量单位;
- (R)=再现性,以平均值的百分数表示。
- (r)和(R)只有合并所有试验结果才能计算出来。

B.3 第一次实验室间比对试验的精密度结果

- **B.3.1** 表 B.1~表 B.4 是方法 A(低空气流速)的精密度结果,表 B.5~表 B.8 是方法 B(高空气流速)的精密度结果。在这些表中,没有给出单独一种材料的相对精密度(r)和(R),因为很多性能值的平均值接近 (R),计算出来的(R)0,证据 (R)0,证据 (R)0,证据 (R)0,证据 (R)0,证据 (R)1。总平均值对于比较四种测试材料的相对精密度十分有用。总平均值的相对精密度使两种方法(R)1。 (R)2。 可以相互比较。
- **B.3.2** 从这些表来看,重复性r和再现性R的差别很小,在某些情况下两者相等。这种现象在前次 ISO 188 老化精密度试验时已经发现。这表明在这类试验中存在一个很大的影响因子,而这种影响因子不是由于实验室间的差异,而是由于某种内在的变化因素,就像实验室内相对于实验室间的区别。这种未知的因素与老化过程有关。

A CONTRACTOR OF THE STATE OF TH

表 B.1 硬度变化的老化精密度(IRHD) (方法 A.低空气流速)

LL Vol	平均变化	平均变化 实验		实验	室间	实验室数目
材料	%	r	(r)	R	(R)	头型 至数口
NR	3.1	3.10		3.63		11
NBR	4.4	2.08		3.68		11
EPDM	22.0	5.50		10.30	•	11
AEM	3.9	6.78		7.78		11
绝对平均值 (不考虑符号)	8.3	4.4		6.3		
相对精密度			53		76	

表 B.2 拉伸强度变化的老化精密度(TS_b) (方法 A:低空气流速)

	平均变化	实验	室内	实验	室间	学心守拳口
材料 %	%	<i>r</i>	(r)	R	(R)	实验室数目
NR	-8.7	8.43		9.34		11
NBR	6.6	9.26		11.83		11
EPDM	4.1	8.24		14.92		11
AEM	-9.3	8.13		10.71		11
绝对平均值 (不考虑符号)	7.2	8.5		11.7		
相对精密度			118		162	

表 B.3 100%定伸应力变化的老化精密度(S_{100}) (方法 A:低空气流速)

材料 平均变化	平均变化 实		室内	实验	室间	实验室数目
	%	r	(r)	R	(R)	头盔全数日
NR	25.2	13.4		16.0		11
NBR	38.4	26.8		26.8		11
EPDM	247.1	78.9		135.3		11
AEM	0.4	15.4		22.7		11
绝对平均值 (不考虑符号)	77.7	33.6		50.2		
相对精密度			43		65	

表 B.4 断裂伸长率变化的老化精密度($E_{\rm b}$) (方法 A. 低空气流速)

材料 平均变化	平均变化	实验室内		实验室间		⇔ 7A ↔ ¥4 □
	r	(r)	R	(R)	实验室数目	
NR	-13.3	10.36		10.36	-	11
NBR	-17.7	14.00		14.00		11
EPDM	-66.5	4.85		7.44		11
AEM	0.8	7.72		17.12		11
绝对平均值 (不考虑符号)	24.2	9.2		12.2		
相对精密度			38		50	

表 B.5 硬度变化的老化精密度(IRHD) (方法 B:高空气流速)

材料	平均变化	实验	实验室内		实验室间	
10.14	%	r	(r) i	R	(R)	实验室数目
NR	4.1	5.14	,	5.14		10
_ NBR	8.7	3.20		5.29		10
EPDM	35.9	3.89		9.67		10
AEM	8.0	5.04		8.00		10
绝对平均值 (不考虑符号)	14.2	4.3		7.0		
相对精密度			30		49	

表 B.6 拉伸强度变化的老化精密度(TS_b) (方法 B.高空气流速)

材料	平均变化	实验	实验室内		实验室间	
	. %	r	(r)	R	(R)	实验室数目
NR	-8.5	7.07		9.23		10
NBR	12.3	12.88		12.88		10
EPDM	7.9	11.88		11.88		10
AEM	-4.4	8.93	,	10.73		10
绝对平均值 (不考虑符号)	₂ 8.3	10.2		11.2		
相对精密度			122		134	

表 B.7 100%定伸应力变化的老化精密度 (S_{100}) (方法 B.高空气流速)

	平均变化 实验室		室内 ~ 实验室		室间	实验室数目
材料	<u>.</u> %	r	(r)	R	(R)	关巡主 数日
NR	24.3	10.3		14.0		10
NBR	54.4	25.0		26.7		10
EPDM	392.1	62.5		194.0	,	10
AEM	19.3	12.0		14.1		10
绝对平均值 (不考虑符号)	122.5	27.4		62.2		
相对精密度			22		51	

表 B.8 断裂伸长率变化的老化精密度(E_b) (方法 B:高空气流速)

	平均变化	实验室内		实验室间		实验室数目
材料 %	r	(r)	R	(R)	大型主奴口	
NR	-14.8	6.86		9.65		10
_ NBR	-19.3	9.41		13.14	*!	10
EPDM	-73.0	5.76		8.89		10
AEM	-3.3	9.39		11.80		10
绝对平均值 (不考虑符号)	27.6	7.9		10.9		
相对精密度			29		39	

B.4 第二次实验室间比对试验的精密度结果

B.4.1 向各参与实验室分发三种已制备好的橡胶试样(NR、NBR、EPDM)。采用方法 B 的 1 型和 2 型 老化箱进行老化试验。

所有试样的老化时间均为 72 h 和 168 h,NR、NBR 和 EPDM 的老化温度分别为 85 ℃、100 ℃和 125 ℃。

- B.4.2 共有 11 个实验室参加了该次实验室间比对试验。5 个实验室采用 1 型老化箱进行老化试验,6 个实验室采用 2 型老化箱进行老化试验。每种试验的实际参与实验室数目列于精密度表中。
- **B.4.3** 根据 ISO 37 分别在老化前后测试 5 个试样的拉伸性能,拉伸试验采用 1A 型试样。因为没有充分的试验数据,因此没有分析硬度的精密度。
- B.4.4 本次实验室间比对试验测定的是 1 型精密度。本次精密度试验的两次重复测量之间间隔了 $2\sim$ 3 周时间,不同于通常测试之间的 $1\sim$ 2 天的时间间隔。

表 B.9~表 B.14 中使用的符号与第一次实验室间比对试验相同。

表 B.9 拉伸强度变化的老化精密度(TS_b) (1 型老化箱)

材料	平均变化	实	验室内	实验	室间	AD TAK AD NOTE TO
721 424	%	r	(r)	R	(R)	- 实验室数目 、
NR, 72 h	-3.2	4.2		8.7		5
NR, 168 h	-11.5	6.7		15.7		5
NBR, 72 h	0.5	6.0		13.8		5
NBR, 168 h	-4.0	11.6		11.3	1	5
EPDM, 72 h	-60	7.7		10.3		5
EPDM, 168 h	7.8	14.9	_	19.0		5
绝对平均值		0 =	_	12.1		
(不考虑符号)	3.5	8.5		13.1		
相对精密度			155		238	
			型老化額			
材料	平均变化		율室内	AND THE PARTY OF T	室间	
	%	r				实验室数目
	4.5.5.5.5				(R)	实验室数目
1 1	%	7 V				
' NR, 72 h	26.6	7.4		40.0		5
NR, 72 h	% 26.6 45.6	7.4 8.2		\$0.5 17 48.5 59.7		5
NR, 72 h NR, 168 h NBR, 72 h	% 26.6 45.6 39.5	7.4 8.2 44.5		10.5		5 5 5
NR, 72 h NR, 168 h NBR, 72 h NBR, 168 h	% 26.6 45.6 39.5 52.1			48.5 59.7		5 5 5
NR, 72 h NR, 168 h NBR, 72 h NBR, 168 h EPDM, 72 h	% 26.6 45.6 39.5 52.1 78.3	44.5		48.5 59.7		5 5 5 5

表 B.11 断裂伸长率变化的老化精密度 (E_b) (1型老化箱)

				'		
	平均变化	实验	室内	~ 实验	室间	实验室数目
材料	%	r	(r)	R	(R)	
NR, 72 h	-12.5	11.9		9.6		5
NR, 168 h	-19.3	1.4		13.8		5.
NBR, 72 h	-23.0	4.7		15.6	,	. 5
NBR, 168 h	-29.3	9.1		13.1		5
EPDM, 72 h	-42.8	5.9		4.2		5
EPDM, 168 h	-49.3	13.3	-	11.4		5
绝对平均值 (不考虑符号)	29.4	7.7		11.3		
上——————————— 相对精密度			26 4		38	

表 B.12 拉伸强度变化的老化精密度(TS_b) (2 型老化箱)

	平均变化	实验	全室内	实验:	室间	实验室数目
材料	%	r	(r)	R	(R)	
NR, 72 h	-4.4	7.5		5.5		6
NR, 168 h	-16.1	9.4		″ 9 . 5		6
NBR, 72 h	-6.7	7.8		17.2		6
NBR, 168 h	-9.6	7.3	1	8.2		6
EPDM, 72 h	-9.5	7.2		10.3		6
EPDM, 168 h	-9.6	12.7		14.0		6
绝对平均值 (不考虑符号)	9.3	8.7		10.8	116	
相对精密度			94		116	

实验室内 实验室间 平均变化 材料 实验室数目 % (r) (R)NR, 72 h 38.4 31.5 24.5 6 NR, 168 h 59.1 36.7 29.8 NBR, 72 h 53.7 10.4 24.7 6 28.5 NBR, 168 h 75.0 EPDM, 72 h 32.2 6 EPDM, 168 h 12.1 39.6 6 绝对平均值 29.0 33.3 (不考虑符号) 相对精密度 裂伸长率变化的老 **实验**室内 室间 平均变 材料 实验室数目 % (R) NR, 72 h -15.6NR, 168 -26 18.0 6 NBR, 72 h 6 NBR, 168 h 36.0 1.6 3.9 6 EPDM, 72 h 14.5 14.7 6

表 B.13 100%定伸应力变化的老化精密度(S_{100}) (2型老化箱)

B.5 第2次实验室间比对试验的精密度结果

34.7

EPDM, 168 h

绝对平均值

(不考虑符号) 相对精密度

B.5.1 表 B.9~表 B.11 是 1 型老化箱的精密度结果,表 B.12~表 B.14 是 2 型老化箱的精密度结果。在这些表中列出了两种老化时间 72 h 和 168 h 的试验值,但是跟第 1 次 ITP 试验一样没有给出单独一种材料的相对精密度(r)和(R)。总平均值的相对精密度使两种方法(方法 A 和方法 B)可以像第 1 次 ITP 试验一样相互比较。

10.4

10.4

B.5.2 从表中数据可以看出,1型和2型老化箱具有几乎一样的精密度。事实上,2型老化箱提供相对更均匀一些的老化,老化后的性能变化也相对大一些。

6

.33

附 录 C (资料性附录) 精密度结果使用指南~

- C.1 使用精密度结果的一般程序如下,用符号 $|x_1-x_2|$ 表示任意两次测量结果的正差(与符号无关)。
- C.2 查相应的精密度表(无论所考虑的是什么试验参数),在测定参数的平均值与正在研究的试验数据平均值最近画一条线,该线将给出判断过程中所用的相应的 r、(r)、R 或(R)。
- C.3 下列一般重复性陈述和相应的 r 和(r)值可用来判定精密度。
 - a) 绝对差:在正常操作的试验程序下,用相同材料的样品得到的两个试验平均值的差 $|x_1-x_2|$ 超过附录 B的表中所列的重复性r的几率不大于 5%。
 - b) 两个试验平均值间的百分数差:在正常和正确的试验程序下,用相同材料的样品得到的两个试验平均值的百分数偏差

$$\frac{\mid x_1 - x_2 \mid}{\frac{1}{2}(x_1 + x_2)} \times 100\%$$

超过附录 B的表中所列的重复性(r)的几率不大于 5%。

- C.4 下列一般重复性陈述和相应的 R 和 (R) 值可用来判定精密度。
 - a) 绝对差:在两个实验室正常和正确的试验程序下,用相同材料的样品得到的两个独立测量的试验平均值间的绝对差 $|x_1-x_2|$ 超过附录 B 的表中所列的再现性 R 的几率不大于 5%。
 - b) 两个试验平均值的百分数差:在两个实验室正常和正确的试验程序下,用相同材料的样品得到的两个独立测量的试验平均值间的百分数偏差

$$\frac{|x_1 - x_2|}{\frac{1}{2}(x_1 + x_2)} \times 100\%$$

超过附录 B的表中所列的再现性(R)的几率不大于 5%。

附 录 D (规范性附录) 校准计划

D.1 核查

在进行任何校准之前,应通过核查确认需校准项目的状况,并记录在校准报告或证书上。报告中应记录校准是在"收货"状态下进行还是纠正异常或维修故障后进行。

应确认设备能够达到预期目的,包括规定的所有参数和不需要正式校准的参数。如果这些参数有可能发生变化,则应在校准程序中写明需要进行期间核查。

D.2 时间表

试验设备的验证、校准是本标准的强制性部分。除非另有规定,校准的频率和程序由各试验室根据 GB/T 25269—2010 的规定自行决定。

表 D.1 列出了试验方法中涉及的所有参数,包括规定的要求。(这些)参数和要求涉及主要的试验设备、设备的部件或试验所需的附件。

对于每项参数,校准程序由 GB/T 25269—2010、其他出版物或专门针对于该试验方法的详细程序给出(如有比 GB/T 25269—2010 更详细的校准程序,则应优先采用)。

- 每项参数的校准频率都由一个字母代码表示,校准计划中使用的字母代码如下:
 - P---特定程序;
 - C---需要确认,但不用测量;
 - N----仅需初始的校准;
 - S----GB/T 25269-2010 中指定的标准的时间间隔;
 - U----使用中。

表 D.1 校准时间表

参数	要求	GB/T 25269—2010 中章节	校准频率指南	备注
老化箱尺寸	试样的体积不超过老化箱有效 容积的 10%	С	Ŭ,	
悬挂试样的规定	试样之间间隔 10 mm,(对于柜式和强制通风式老化箱)试样距箱壁至少 50 mm	15.2	υ	·
温度	第8章中规定的公差范围内	第 18 章(程序 B)	S	
材料	加热室结构中没有铜或铜合金	С	N	
. 空气流速	3 次~10 次每小时	16.3	s	· ·

表 D.1 (续)

参数	要求	GB/T 25269—2010 中章节	校准频率指南	备注
多单元老化箱: 高度 空气流速 设计	最小 300 mm 只取决于换气率 单元置于传热良好的介质中, 流过一个单元的空气 不允许流经另一个单元	15.2 C C	N N	
柜式老化箱	加热室中没有换气扇	С	N	
强制通风式老化箱: 布局 空气流速	见 4.1.4 (1 型)介于 0.5 m/s~1.5 m/s 之间或(2 型)0.5 m/s±0.25 m/s	C P	N S	检定方法 参见附录 A

除了表 D.1 列出的项目外,下面使用的设备也需按照 GB/T 25269—2010 进行校准:

^{——}计时器;

^{——}用来监控状态调节和试验温度的温度计。

GB/T 3512-2014/ISO 188:2011 *

参考文献

- [1] ISO/TR 9272, Rubber and rubber products—Determination of precision for test method standards(GB/T 14838—2009, ISO/TR 9272: 2005, IDT)
- [2] ISO 11346, Rubber, vulcanized or thermoplastic—Estimation of life-time and maximum temperature of use(GB/T 20028—2005, ISO 11346:1997, IDT)

中 华 人 民 共 和 国 国 家 标 准 硫化橡胶或热塑性橡胶 热空气加速老化和耐热试验 GB/T 3512-2014/ISO 188.2011

中国标准出版社出版发行 北京市朝阳区和平里西街甲2号(100029) 北京市西城区三里河北街16号(100045)

网址 www.spc.net.cn 总编室:(010)64275323 发行中心:(010)51780235 读者服务部:(010)68523946 中国标准出版社秦皇岛印刷厂印刷 各地新华书店经销

开本 880×1230 1/16 印张 1.5 字数 35 千字 2015年1月第一版 2015年1月第一次印刷

书号: 155066 · 1-50719 定价 24.00 元

如有印装差错 由本社发行中心调换 版权专有 侵权必究 举报电话:(010)68510107

GB/T 3512-2014